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ABSTRACT

Hurwitz moduli spaces for G-covers of the projective line have two classi-

cal variants whether G-covers are considered modulo the action of PGL2

on the base or not. A central result of this paper is that, given an inte-

ger r ≥ 3 there exists a bound d(r) ≥ 1 depending only on r such that

any rational point prd of a reduced (i.e., modulo PGL2) Hurwitz space

can be lifted to a rational point p on the nonreduced Hurwitz space with

[κ(p) : κ(prd)] ≤ d(r). This result can also be generalized to infinite tow-

ers of Hurwitz spaces. Introducing a new Galois invariant for G-covers,

which we call the base invariant, we improve this result for G-covers with a

nontrivial base invariant. For the sublocus corresponding to such G-covers

the bound d(r) can be chosen depending only on the base invariant (no

longer on r) and ≤ 6. When r = 4, our method can still be refined to pro-

vide effective criteria to lift k-rational points from reduced to nonreduced

Hurwitz spaces. This, in particular, leads to a rigidity criterion, a genus

0 method and, what we call an expansion method to realize finite groups

as regular Galois groups over Q. Some specific examples are given.

Introduction

Given a field k of characteristic 0, we write Γk for its absolute Galois group.

Also, given a k-variety X and a k-rational point p ∈ X(k), we write κ(p) for

the field of definition of p that is the fixed field in k of the stabilizer of p under

Γk.
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Fix a finite group G, an integer r ≥ 3 and consider the groupoid of G-covers

with group G and degree r ramification divisor. The projective general linear

group PGL2 acts naturally on G-covers by composition; taking this action into

account yields a new groupoid of G-covers — the groupoid of G/PGL2-covers —

with an enlarged set of isomorphisms. Both groupoids of G-covers and G/PGL2-

covers admit coarse moduli spaces defined over Q, called Hurwitz spaces, Hr,G,

and reduced Hurwitz spaces, Hrd
r,G, respectively. The map Π : Hr,G → Hrd

r,G can

then be identified with the quotient map of PGL2 acting on Hr,G naturally; in

particular, dim(Hrd
r,G)=dim(Hr,G) − 3 = r − 3.

The main motivation for studying these objects is the regular inverse Galois

problem which, basically, reduces to finding Q-rational points on nonreduced

Hurwitz spaces. The case r = 4 is particularly worth considering since, then

reduced Hurwitz spaces are curves and, in some cases, one can find geometrically

irreducible components of them which are birational over Q to the projective

line P1
Q. But, in general, a Q-rational point on Hrd

r,G does not lift to a Q-rational

point on Hr,G. The aim of this paper is to study this lifting problem, and, in

particular, to find subsets U ⊂ Hrd
r,G(Q) where any point prd ∈ U can be lifted

to a point p ∈ Hr,G with κ(prd) = κ(p).

To carry out this study, we associate to any G-cover f a new Galois invariant

Ef we call the base invariant of f ; for a given r, there are only finitely many

possible values for Ef . This base invariant, when nontrivial, encodes most of the

lifting problem; it also encodes whether the prestack of models of f over k is a

stack or not (Proposition 2.5). Assume f has field of moduli k as G/PGL2-cover,

we use Ef to construct a cohomological obstruction Ik(f) ⊂ H1(k, PGL2(k))

which vanishes (i.e., contains the trivial class) over an extension K/k if and

only if f is G/PGL2-isomorphic to a G-cover with field of moduli K as G-cover.

In other words, Ik(f) vanishes over K/k if and only if the k-rational point

corresponding to f on Hrd
r,G can be lifted to a K-rational point on Hr,G. Using

this cohomological obstruction and nonabelian Galois cohomology, we obtain a

precise answer to the original problem (Corollaries 3.9 and 3.11) and its profinite

generalization (Corollary 3.15). To sum it up, denote by Hrd
r,G(E) ⊂ Hrd

r,G(Q)

the subset corresponding to G-covers with base invariant E . Then we have the

following
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Theorem: (1) If E is nontrivial then there is an integer d(E) depending only

on E and equal to 1, 2 or 6 such that any point prd ∈ Hrd
r,G(E) can be lifted to

a point p ∈ Hr,G with [κ(p) : κ(prd)] ≤ d(E).

(2) In general, there is an integer d(r) depending on r such that any point

prd ∈ Hrd
r,G(E) can be lifted to a point p ∈ Hr,G with [κ(p) : κ(prd)] ≤ d(r).

We also show that if k is a field with 2-cohomological dimension cd2(k) ≤ 1

then Hr,G(k) maps surjectively onto Hrd
r,G(k). This yields, for instance, that

for prd ∈ Hrd
r,G(Q) the field κ(prd) is the intersection of all the fields κ(p) with

p ∈ Π−1(prd).

Finally, we explain how topological methods give a group-theoretical descrip-

tion of the base-invariant (Section 4). Combining this and a refined version

of the above theorem when r = 3, 4 (Corollary 5.1) yields effective criteria to

find Q-rational points on nonreduced Hurwitz spaces from Q-rational points on

reduced Hurwitz spaces: a rigidity criterion (Corollary 5.3), a genus 0 criterion

(Corollary 5.5) and what we call an expansion method (proposition 5.7). Us-

ing the Braid program [21], [30], we obtain, for instance, regular realizations of

L2(19) over Q with 4 copies of the conjugacy class of order 3 elements as inertia

canonical invariant (genus 0) or of L2(25) over Q with 42 copies of the conju-

gacy class of order 3 elements as inertia canonical invariant (expansion). These

groups have already been realized regularly over Q via the classical rigidity

method, but not with these inertia canonical invariants.

Acknowledgement. I would like to thank A. Tamagawa for discussions and

several improvements of my original work, H. Völklein for devoting time to

explain to me the Braid program and G. Wiesend for his interest in the co-

homological part of this work. I am also very grateful to Pierre Dèbes for his

re-readings of this paper and his constructive suggestions.

1. Preliminaries

1.1. Hurwitz spaces and reduced Hurwitz spaces. The central objects

of this paper are G-covers of the projective line in characteristic 0. Recall that,

given a finite group G and a field k of characteristic 0, a G-cover of the projective

line over k with group G is a pair (f : X → P1
k, α) where f : X → P1

k is a Galois

cover and α :Aut(f)→̃G a group isomorphism. In the following, we will almost

always drop the α in our notation though it remains part of the data.
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One can define two categories (fibered in groupoids above spec(Q)et) of G-

covers of the projective line: the category of G-covers and the category

of G/PGL2-covers. In both categories objects are G-covers. In the usual

category of G-covers a morphism from (f1 : X1 → P1
k, α1) to (f2 : X2 → P1

k, α2)

is an isomorphism u : X1→̃X2 such that f2 ◦ u = f1 and α1(g1) =

α2(ug1u
−1), g1 ∈ Aut(f1) whereas in the category of G/PGL2-covers a mor-

phism from (f1 : X1 → P1
k, α1) to (f2 : X2 → P1

k, α2) is a pair of isomorphisms

(u : X1→̃X2, v : P1→̃P1) such that f2 ◦ u = v ◦ f1 and α1(g1) = α2(ug1u
−1),

g1 ∈ Aut(f1).

From now on, given a field k of characteristic 0, we will always assume a

compatible system (ζn)n≥1 of primitive roots of unity is given in the algebraic

closure k of k (that is, ζn
nm = ζm, n, m ≥ 1). With this convention, two classical

invariants can be associated to a given G-cover f : X → P1
k

of the projective

line over k with group G : the ramification divisor t ∈ Ur, where Ur denotes

the fine moduli space for r unordered marked points on the (fixed) projective

line and the inertia canonical invariant C = (Ct)t∈t1.

Given a finite group G and an r-tuple C = (C1, . . . , Cr) of nontrivial conju-

gacy classes in G, both categories of G-covers and G/PGL2-covers with group

G and inertia canonical invariant C admit coarse moduli spaces called inner

Hurwitz spaces and reduced inner Hurwitz spaces respectively. Inner

Hurwitz spaces have been studied by many authors and there exist various con-

structions of them. See [14] for a good survey of them. Classical references

include [16], [32], [33], etc. Reduced inner Hurwitz spaces appear for instance

in [1] and [5]. The two following paragraphs sum up the properties that will

be needed further. In section 4, the topological aspect will be dealt with more

precisely.

1.1.1. Hurwitz spaces. Fix a finite group G and a r-tuple C = (C1, . . . , Cr)

of nontrivial conjugacy classes in G. Denote by H(C) the set of all G-iso-

morphism classes of G-covers defined over C with invariants G, C and by

1 Recall that C = (Ct)t∈t is defined as follows. For each t ∈ t, choose a place Pt in k(X)

above t and let IPt
be the corresponding inertia group, which is cyclic of order et. Any

uniformizing parameter u ∈ Pt induces a well-defined (independent of the uniformizing

parameter u) group monomorphism φPt
: IPt

→֒ k
×

, ω → ω(u)/u mod Pt. The element

ωPt
:= α(φ−1

Pt
(ζet )) ∈ G (where ζet is our distinguished etth root of unity) is called

the distinguished generator of IPt
. The set of all ωPt

for places Pt above t is a full

conjugacy class Ct in G.



Vol. 164, 2008 LIFTING RESULTS FOR RATIONAL POINTS 23

Ψ : H(C) → Ur(C) the ramification divisor map, sending the G-isomorphism

class of a G-cover f to its ramification divisor t. By Riemann’s Existence The-

orem, this map has finite fibers in (noncanonical) bijection with the Nielsen

class ni(C) that is, the quotient set modulo the componentwise action of the

inner automorphism group Inn(G) of

ni(C) =















(g1, . . . , gr) ∈ Gr

∣

∣

∣

∣

∣

∣

∣

∣

(1) G = 〈g1, . . . , gr〉

(2) g1 · · · gr = 1

(3) gi ∈ Cσ(i), i = 1, . . . , r for some σ ∈ Sr















.

The (noncanonical) isomorphism Ψ−1(t) ≃ ni(C) depends on the choice of

a topological bouquet for P1(C) \ t and it is given by the monodromy. The

set H(C) can be equipped in a unique way with a topology and an analytic

structure such that Ψ becomes an analytic cover. Then, invoking results of

G.A.G.A. type, one obtains the following theorem.

Theorem 1.1 ([16, Theorem 1]): The analytic space H(C) can be equipped in

a unique way with an algebraic structure of affine variety H(C) (defined over an

explicitly computable cyclotomic number field QC which depends only on C)

such that the analytic cover Ψ is induced by a finite etale cover Ψ : H(C) → Ur

defined over QC. Furthermore, we have the following properties:

(1) Coarse moduli: For any algebraically closed field k of characteristic

0 the set of k-rational points H(C)(k) is in bijection with the set of all G-

isomorphism classes of G-covers defined over k and with invariants G, C.

(2) Galois action: For any field extension k/QC and for any σ ∈ Γk,

[f ] ∈ H(C)(Q) we have σ[f ] = [σf ]. So, in particular, the set of k-rational

points H(C)(k) is in bijection with the set of all G-isomorphism classes of G-

covers with field of moduli k and invariants G, C.

(3) Topological description: the geometrically irreducible components

of H(C) are in bijection with the connected components of the associated topo-

logical space H(C)(C)top which, in turn, are in bijection with the orbits of

the topological fundamental group Hr of the base space Ur(C) on the fibers

Ψ−1(t) ≃ ni(C).

1.1.2. Reduced Hurwitz spaces. Now, to define reduced Hurwitz spaces, consider

the natural action of the projective general linear group PGL2 over H(C) and
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Ur, for which Ψ is invariant. As PGL2 is an affine reductive algebraic Q-

group acting on affine algebraic Q (resp. QC)-varieties, it follows from [25,

Theorem 1.1] that the quotient spaces, denoted by Hrd(C) and Jr, exists in

the category of affine algebraic Q (resp. QC)-varieties. More precisely, one

obtains the following theorem.

Theorem 1.2 ([1, Proposition 3.4 and Proposition 3.28]): The quotient space

exists in the category of QC-affine varieties

H(C)
Π //

Ψ

��

Hrd(C)

Ψrd

��
Ur

Πr // Jr

and the reduced cover Ψrd is ramified over the closed subvariety corresponding

to PGL2-orbits of divisors t ∈ Ur with a nontrivial stabilizer. Furthermore,

Hrd(C) has properties (1) and (2) of Theorem 1.1 with G/PGL2-covers instead

of G-covers and the geometrically irreducible components of Hrd(C) are in

bijection with the geometrically irreducible components of H(C).

1.2. The lifting problem. The main motivation for this work is finding Q-

rational points on Hurwitz spaces. Indeed, by [16, Lemma 2], the regular inverse

Galois problem over a field k is equivalent to the following arithmetico-geometric

conjecture.

Conjecture 1.3: For any centerless finite group G there exists a r-tuple C

of nontrivial conjugacy classes of G such that the inner Hurwitz space H(C) is

defined over k and carries k-rational points.

Conjecture 1.3 was proved for ample fields, but it is still entirely open for

number fields and Qab. Over these fields, most of the results were obtained

using rigidity [32], [22] or genus 0 methods over nonreduced Hurwitz spaces

[23], [13].

Now, fix a finite group G and a r-tuple C of nontrivial conjugacy classes

of G. The underlying principle of genus 0 methods is to consider curves C

on nonreduced Hurwitz spaces H(C) obtained by lifting geometrically irre-

ducible QC-rational curves C0 of the base space Ur. For clever choices of C0, one

can compute the ramification data of the projective normalization of the cover

C → C0, hence the geometrically irreducible components O1, . . . , On of C and, by
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Riemann–Hurwitz, their respective genera g1, . . . , gn. Assume that one of these

components, say O, has genus 0, is defined over QC and carries a QC-rational

divisor of odd degree. Then, by the Riemann–Roch theorem, O is birational to

P1 over QC and, in particular, it has a dense subset of QC-rational points.

As the quotient Π : H(C) → Hrd(C) is defined over QC, it should be easier

to find QC-points on Hrd(C). For instance, when r = 4, Hrd(C) is a curve and

O can be regarded as a finite cover of some geometrically irreducible component

Ord of Hrd(C). In particular, the genus of Ord will be often smaller than the

genus of O. In addition, one can compute the ramification data of the projective

normalization of Ψ : Hrd(C) → J4 ≃ P1\{0, 1,∞} (cf. Theorem 5.2), hence the

genus 0-argument described above can also be checked effectively for Hrd(C).

However, in view of the regular inverse Galois problem, the significant Hurwitz

spaces are not the reduced ones but the nonreduced ones. This motivates the

following problem.

Problem (Lifting problem): Given a field k and a k-rational point prd ∈

Hrd(C)(k), find a minimal upper bound for

mk(prd) := min{[κ(p) : k] : p ∈ Π−1(prd)}.

In terms of G-covers, the lifting problem is equivalent to the following. Given

a field k and a G-cover f with field of moduli k as G/PGL2-cover, find a minimal

upper bound for the degree over k of the field of moduli as G-cover of v ◦ f ,

when v describes PGL2(k).

To realize regularly finite groups over k, one has to prove that

prd ∈ Hrd(C)(k)

can be taken in such a way that mk(prd) = 1. We give criteria for this when

r = 3, 4 and k is any field of characteristic 0 (in particular, Q) in Section 5.2.

This leads to three effective methods: a rigidity method (Corollary 5.3), which

refines the usual rigidity argument by considering an additional Galois invariant

— the base invariant, the genus 0 method described above (Corollary 5.5) and,

what we call an expansion method (Proposition 5.7).

2. Cohomological obstruction

2.1. The base invariant. Given a G-cover f : X → P1
k, we define the base

group of f to be the stabilizer Ef of the G-isomorphism class of f under PGL2,
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that is the set of all v ∈PGL2(k) such that f and v ◦ f are G-isomorphic. This

is not an invariant of the G/PGL2-isomorphism class of f . That is why we

introduce the base invariant of f , defined as the conjugacy class of Ef in

PGL2(k) and we denote it by Ef .

The base group Ef is a subgroup of the stabilizer St of the ramification

divisor t of f in PGL2(k). In particular, |Ef | is finite provided r ≥ 3, which

we will always assume in the following. If, furthermore, we specify the inertia

canonical invariant C = (Ct)t∈t and define a partition t1, . . . , ts of t in such a

way that Ct = Ci, t ∈ ti and Ci 6= Cj , 1 ≤ i 6= j ≤ s then Ef is a subgroup of

St1 × · · · × Sts
⊂ St. For instance, if s = r then Ef is trivial, if s = r − 1 then

Ef is either trivial or Z/2Z, etc.

The finiteness of the base group implies that, for a given r ≥ 3, the base

invariant can only take finitely many possible values. This is a consequence of

the following classification result for finite subgroups of PGL2(k).

Lemma 2.1 (Classification): Let k be a field of characteristic 0. Then,

(1) Classification: Any finite subgroup of PGL2(k) is conjugate to one of

the following groups.

- Cn =
{(

ζr
n 0
0 1

)

, r = 0, . . . , n − 1
}

, where ζn is a primitive n-th root of unity,

n ≥ 1.

- D2n =
{(

ζr
n 0
0 1

)

,
(

0 ζr
n

1 0

)

, r = 0, . . . , n − 1
}

, where ζn is a primitive n-th root

of unity, n ≥ 3.

- V4 =
{(±1 0

0 1

)

,
(

0 ±1
1 0

)}

.

- A4 =
{

(±1 0
0 1

)

,
(

0 ±1
1 0

)

,
(

iν iν

1 −1

)

,
(

iν −iν

1 1

)

,
(

1 iν

1 −iν

)

,
(

−1 −iν

1 −iν

)

, ν = 1, 3
}

.

- S4 =
{

(

iν 0
0 1

)

,
(

0 iν

1 0

)

,
(

iν −iν+ν′

1 iν′

)

, ν, ν′ = 0, 1, 2, 3
}

.

- A5 =
{

(

ζr 0
0 1

)

,
(

0 ζr

1 0

)

,
(

ζrω ζr−s

1 −ζsω

)

,
(

ζrω ζr−s

1 −ζ−sω

)

, r, s = 0, 1, 2, 3, 4
}

,

where ω = −1+
√

5
2 , ω = −1−

√
5

2 and ζ is a primitive 5-th root of unity.

(2) Normalizers: - NorPGL2(k)(Cn) = k
⋆

⋊ Z/2 (with 1 ∈ Z/2 acting on

α ∈ k
⋆

via (1, 1)(α, 0)(1, 1) = (α−1, 0)), n ≥ 2).

- NorPGL2(k)(D2n) = D4n, n ≥ 3.

- NorPGL2(k)(V4) = NorPGL2(k)(A4) = NorPGL2(k)(S4) = S4.

- NorPGL2(k)(A5) = A5.

(3) Quotients galois modules: If E is one of the groups listed in (1) and

N is its normalizer then both E and N are globally Γk-invariant. Consequently,
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the resulting quotient group Q := N/E carries a natural structure of Γk-module.

- E = S4, A5: Q = {1}.

- E = A4, D2n, n ≥ 3: Q = Z/2.

- E = Cn, n ≥ 2: Q = k
⋆

⋊ Z/2.

- E = V4: Q = Z/3 ⋊ Z/2.

Proof. For (1) and (2) we refer to [31]. As for (3), if E = S4, A5 then E = N

and Q = {1}. If E = A4, D2n, n ≥ 3 then Q = Z/2 as a group and the only

Γk-module structure on Z/2Z is the trivial one. If E = Cn, n ≥ 2 then consider

the Γk-module epimorphism p : k
⋆

⋊ Z/2 ։ k
⋆

⋊ Z/2 sending (α, 0) to (αn, 0)

and (1, 1) to (1, 1). Its kernel is Cn thus p identifies Q with k
⋆

⋊ Z/2. Finally,

if E = V4 then N = S4. Denote by I, Ai, i = 1, 2, 3 and B the classes in Q

of, respectively, I2,
(−1 1

1 1

)

, ( 0 i
1 0 ),

(

i −1
1 −i

)

and
(

1 −i
1 i

)

. This defines a canonical

group isomorphism Q→̃Z/3 ⋊ Z/2 sending B to (0, 1) and A1 to (1, 0). Finally,

straightforward computations show that the classes I, Ai, i = 1, 2, 3, B are

Γk-invariant and, consequently, that Q is the trivial Γk-module Z/3⋊Z/2.

We will use the following cohomological result several times. With the nota-

tion of (1) of Lemma 2.1, let

(1) 1 // K // G // Z/2 //

s

~~
1

be one of the two split short exact sequences of Γk-modules

(2) 1 // Cn
// D2n

// Z/2 //

s

||
1, n ≥ 2

or

(3) 1 // D2n
// D4n

// Z/2 //

s

||
1, n ≥ 3 odd.

where s : Z/2 → G is the section sending 1 to ( 0 1
1 0 ) in (2) and to

(−1 0
0 1

)

in (3).

Then (1) yields in cohomology the following commutative diagram.

H1(k, G)
i //

p

��

H1(k, PGL2(k))

H1(k, Z/2)

i◦s

77nnnnnnnnnnnn

s

??
.
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Lemma 2.2: The map i ◦ s : H1(k, Z/2) → H1(k, PGL2(k)) is trivial.

Proof. Let χ ∈H1(k, Z/2) be any nontrivial element and let Lχ be the fixed

field of ker(χ) in k. Then Lχ/k is a quadratic extension and, in particular, it

admits a primitive element x /∈ k such that x2 ∈ k.

Now, introducing vx :=
(

1 1
1+x 1−x

)

∈ PGL2(k) when (1) is (2) and vx :=

( x 0
0 1 ) ∈ PGL2(k) when (1) is (3), one immediately checks that

v−1
x

σvx = χσ, σ ∈ Γk.

For technical matters, we will need the following notions. Given a G-cover

f : X → P1
k
, the representative E0

f of Ef which appears in (1) of Lemma 2.1 is

the normalized base group of f ; we will denote by N0
f and Q0

f = N0
f /E0

f the

corresponding normalizer and quotient Γk-module. A normalized represen-

tative of f is a representative f0 : X0 → P1
k

of the G/PGL2-isomorphism class

of f with base group Ef0 = E0
f ; we will denote by N (f) the set of normalized

representatives of f . Any choice of f0 ∈ N (f) defines a bijection Q0
f→̃N (f).

2.2. Construction of the cohomological obstruction. Given a G-

cover f : X → P1
k

with field of moduli k as G/PGL2-cover, let

f0 : X0 → P1
k
∈ N (f)

be any of its normalized representatives. Then f0 also has field of moduli k as

G/PGL2-cover that is, for any σ ∈ Γk we have a commutative diagram

σX0
uσ //

σf0

��

X0

f0

��
P1

k vσ

// P1
k

where the horizontal arrows are isomorphisms. On the one hand, E σf0 =

Ev−1
σ f0

= v−1
σ Ef0vσ and, on the other hand, E σf0 = σEf0 . But, as f0 is a

normalized representative, Ef0 = E0
f is Γk-invariant, which forces (and this is

the key point) vσ ∈ N0
f . However, vσ is only defined up to composition by

elements of the normalized base group E0
f so, the well-defined object is vσ mod

E0
f ∈ Q0

f . This leads to the following lemma.
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Lemma 2.3: The map cf0 : Γk → Q0
f sending σ to vσ mod E0

f is a well-defined

1-cocycle. Furthermore the corresponding cohomological class [cf0 ] ∈ H1(k, Q0
f )

is independent of the choice of the normalized representative f0 ∈ N (f); we

denote it by [c]f .

Proof. First, it is readily checked that the definition of cf0 does not depend on

the vσ, σ ∈ Γk. Likewise, it is a 1-cocycle since for any σ, τ ∈ Γk, we have

vστ ◦ f0 ≃ στf0 ≃ σ(vτ ◦ f0) ≃
σvτ

σf0 ≃ σvτ ◦ vσ ◦ f0 = (vσ
σvτ ) ◦ f0,

where all the above isomorphisms are G-covers isomorphisms. So v−1
στ vσ

σvτ ∈

E0
f or, in other words, vστ mod E0

f = vσ mod E0
f

σ(vτ mod E0
f ). Finally,

if f1
0 , f2

0 ∈ N (f) are two normalized representatives then there exists v0 ∈

PGL2(k) such that f1
0 and v0◦f2

0 are G-isomorphic. But Ef1
0

= Ef2
0

= E0
f forces

v0 ∈ N0
f and a straightforward computation shows that cf1

0
(σ) = v−1

0 cf2
0
(σ) σv0,

σ ∈ Γk.

Let k0/k be a field extension. A sufficient condition for f to be G/PGL2-

isomorphic to a G-cover with field of moduli k0 as G-cover is that Resk0

k ([c]f )

be the trivial class in H1(k0, Q
0
f). Indeed, if Resk0

k ([c]f ) is trivial in H1(k0, Q
0
f )

then there exists v0 ∈ N0
f such that for any σ ∈ Γk0 we have a commutative

diagram
σX0,k0

uσ //

σf0,k0

��

X0,k0

f0,k0

��
P1

k0 eσ◦(v−1
0

σv0)

// P1
k0

with eσ ∈ E0
f thus, up to replacing uσ by ǫ−1

σ ◦uσ where ǫσ is any automorphism

of X0,k0
lifting eσ, we get

σX0,k0

ǫ−1
σ uσ

OO

σf0,k0

//

X0,k0

f0,k0 //

P1
k0

v−1
0

σv0

OO

σv0

//

P1
k0

v0

##GG
GG

GG
GGG

G

P1
k0

that is, v0 ◦ f0,k0
has field of moduli k0 as G-cover. However, this imposes that

v0 ◦f0,k0
is also a normalized representative but, a priori, there is no reason why

normalized representatives should have better lifting properties. So, to obtain
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an if and only if condition, the “good” cohomological object is the lifting

cohomological obstruction of f over k defined by

Ik(f) := i(p−1([c]f ) ⊂ H1(k, PGL2(k))

where, p and i are the natural map induced by functoriality which appear in

the diagram below.

(4) H1(k, N0
f )

i //

p

��

H1(k, PGL2(k))

H1(k, Q0
f )

The definition of Ik(f) depends only on the G/PGL2-isomorphism class of f

and commutes with base extension that is, for any field extension k0/k we have

Ik0 (f ×k k0) ⊃ Resk0

k (Ik(f)). In the following, we will write Ik0(f) instead of

Ik0 (f ×k k0).

Proposition 2.4 (Cohomological obstruction): Let k0/k be a field extension.

Then the G-cover f is G/PGL2-isomorphic to a G-cover with field of moduli k0

as G-cover if and only if Ik0(f) contains the trivial cohomology class.

Proof. As all the objects we consider commute with base extension, it is enough

to make the proof with k0 = k. Let f0 : X0 → P1
k
∈ N (f) be a normalized

representative of f and assume there exists v ∈ PGL2(k) such that v ◦ f0 has

field of moduli k as G-cover that is, for any σ ∈ Γk we have a commutative

diagram

σX0

uσ

OO

σf0

//

X0

f0 //

P1
k

v−1 σv

OO

σv
//

P1
k

v

!!CC
CC

CC
CC

C

P1
k

This implies that the map cv : Γk → N0
f sending σ to v−1 σv is a well-defined

1-cocycle satisfying furthermore (i) p([cv]) = [c]f and (ii) i([cv]) is the trivial

class in H1(k, PGL2(k)).

Conversely, assume that Ik(f) contains the trivial class, that is, there exists

a well-defined 1-cocycle c : Γk → N0
f such that (i) p([c]) = [c]f and (ii) i([c]) is

the trivial class in H1(k, PGL2(k)). But condition (ii) means that cσ = v−1 σv
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for some v ∈ PGL2(k) and condition (i) means that there exists f0 : X0 →

P1
k
∈ N (f) with p([cf0 ]) = p([c]). In other words, for any σ ∈ Γk, we have a

commutative diagram

σX0
uσ //

σf0

��

X0

f0

��
P1

k eσ◦(v−1 σv)

// P1
k

with eσ ∈ E0
f . Up to replacing uσ by ǫ−1

σ ◦ uσ where ǫσ is any automorphism of

X0 lifting eσ, we obtain that v ◦ f0 has field of moduli k as G-cover.

Our invariant Ik(f) can also be interpreted in terms of gerbes. For the theory

of gerbes, which is a classical alternative to Galois cohomology for descent

problems ([9], [10]) we refer to [18] and [11].

In general, given a G-cover f with field of moduli k as G/PGL2-cover, the

natural prestack of models over spec(k)et associated to f , PSG/PGL2
(f), is not

a stack and so, a fortiori not a gerbe. More precisely, to show PSG/PGL2
(f) is

a stack (and hence a gerbe), we would have to check

Condition (S): For any finite Galois extensions E/k and F/E and for any

fF : X → P1
F ∈ PSG/PGL2

(f)(F ), if for any σ ∈ Gal(F |E) there exists a

G/PGL2-isomorphism (uσ, vσ) from σf to f such that

(uστ , vστ ) = (uσ, vσ) σ(uτ , vτ ), σ, τ ∈ Gal(F |E),

then there exists a G-cover fE : XE → P1
E defined over E and a G/PGL2-

isomorphism (u0, v0) from fE×EF to f such that (uσ, vσ) = (u−1
0

σu0, v
−1
0

σv0),

σ ∈ Gal(F |E).

If we use Weil’s cocycle criterion for algebraic varieties, vστ = vσ
σvτ , σ, τ ∈

Gal(F |E) implies that there exists a E-curve CE and a F -isomorphism P1
F

v
→

CE ×E F such that vσ = v−1 σv, σ ∈ Gal(F |E). Applying again Weil’s cocycle

criterion to the G-cover v ◦ fF : X → CE ×E F , uστ = uσ
σuτ , σ, τ ∈ Gal(F |E)

implies that there exists a G-cover fE : XE → CE and a F -isomorphism u from

f to fE ×E F such that uσ = u−1 σu, σ ∈ Gal(F |E). The problem is that one

cannot assert, in general, that CE(E) 6= ∅ and, so, CE may not be isomorphic

to P1 over E. This is exactly what our cohomological obstruction encodes.
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Proposition 2.5: Assume that Z(G) is trivial. Then the prestack of models

PSG/PGL2
(f) is a gerbe over k if and only if for any finite extension E/k the

cohomological obstruction IE(f) ⊂ H1(E, PGL2(E)) is either empty or contains

only the trivial class. The if condition remains true without the assumption that

Z(G) is trivial.

Proof. Let f : X → P1
k

such that, for any finite extension E/k, either IE(f)

is empty or contains only the trivial class. We may assume that f is a nor-

malized representative. Then, with the notation of condition (S) above, the

map v : Gal(F |E) → PGL2(F ) sending σ to vσ is a 1-cocycle the cohomology

class of which [v] ∈ H1(Gal(F |E), PGL2(F )) injects by inflation in IE(f). If

IE(f) = ∅, then condition (S) above is trivially satisfied and the proposition

is straightforward. If IE(f) contains only the trivial class in H1(E, PGL2(E)),

then [v] becomes trivial in H1(E, PGL2(E)) but, as inflation is injective, [v] is

already trivial in H1(Gal(F |E), PGL2(F )) that is, there exists v0 ∈ PGL2(F )

such that vσ = v−1
0

σv0, σ ∈ Gal(F |E). Applying Weil’s cocycle criterion to

v0 ◦ f then yields the conclusion of condition (S).

Conversely, suppose that Z(G) is trivial and PSG/PGL2
(f) is a stack over k. If

IE(f) 6= ∅, any [v] ∈ IE(f) can be represented by a 1-cocycle v : Γk → PGL2(k)

such that for any σ ∈ Γk there exists a G-cover isomorphism uσ between σf

and v−1
σ ◦ f . The assumption that Z(G) is trivial ensures that u also satisfies

Weil’s cocycle conditions. Now, choose a Galois extension F/E over which f

is defined and [v] becomes trivial (that is [v] can be regarded as an element

of H1(Gal(F |E), PGL2(F )), which, by inflation, injects in H1(E, PGL2(E))).

Then, the stack condition (S) implies that there exists a G-cover fE : XE → P1
E

and a G/PGL2-isomorphism (u0, v0) defined over F between fE ×E F and f

such that (uσ, vσ) = (u−1
0

σu0, v
−1
0

σv0), σ ∈ Gal(F |E). In particular, [v] is

trivial in H1(Gal(F |E), PGL2(F )) thus in H1(E, PGL2(E)).

The above discussion also provides a geometrical description of the cohomo-

logical obstruction Ik(f). Indeed, recall that a twist of P1
k over k is a pair

(C/k, φ), where C/k is a smooth, geometrically irreducible projective curve over

k and φ : C ×k k→̃P1
k

is a k-isomorphism. Then, classically, H1(k, PGL2(k))

classifies the isomorphism classes of twists of P1
k over k (the trivial class cor-

responding to the trivial twist (P1
k, Id)). The twists corresponding to Ik(f) ⊂

H1(k, PGL2(k)) are precisely those twists θ = (C/k, φ) such that there exists a

G-cover fθ : Xθ → C defined over k with fθ ×k k G-isomorphic to f over k.
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2.3. A variant for ramification divisors. The notions and construction

of Sections 2.1 and 2.2 can be extended to ramification divisors. Indeed, given

an integer r ≥ 3 and t ∈ Ur(k), the conjugacy class St of the stabilizer St of

t in PGL2(k) is an invariant of the PGL2(k)-orbit trd ∈ Jr(k) of t. Let S0
t

be the representative of St which appears in (1) of Lemma 2.1 and call it the

normalized stabilizer of t; we will denote by N0
t and Q0

t the corresponding

normalizer and Γk-module quotient. A normalized representative of t is

a representative t0 of the PGL2(k)-orbit trd of t such that St0 = S0
t
. Now,

assume that trd ∈ Jr(k). Then, following exactly the pattern of Section 2.2,

the set of normalized representative t0 of trd defines a set of equivalent 1-

cocycle ct0 : Γk → Q0
t . We write [c]trd for the corresponding cohomology

class and we define the lifting cohomological obstruction of trd over k by

Ik(trd) = i(p−1([c]trd)). We have the analog of Proposition 2.4.

Proposition 2.6 (Cohomological obstruction): Let k0/k be a field extension.

Then trd ∈ Jr(k) can be lifted to a ramification divisor t ∈ Ur(k0) if and only

if Ik0 (t
rd) contains the trivial cohomology class.

3. Criteria for the lifting problem

We have now a cohomological tool to deal with the lifting problem.

3.1. Non emptiness of Ik(f). Let us start by studying when one can assert

that, given a G-cover f : X → P1
k

with field of moduli k as G/PGL2-cover,

the cohomological obstruction Ik(f) of f over k is not empty. This problem is

partially answered by the following proposition.

Proposition 3.1: Let E be any of the groups listed in (1) of Lemma 2.1 and

denote as usual by N and Q = N/E the corresponding normalizer and quotient

Γk-module. Then, the canonical map of pointed sets p : H1(k, N) → H1(k, Q)

is surjective (and so Ik(f) 6= ∅) except possibly when E = Cn, n ≥ 2 or E = V4.

Proof. If E = S4, A5 then Q is trivial and there is nothing to prove. If E = A4

then N = S4 and N is isomorphic, as a Γk-module, to A4⋊Z/2Z (a Γk-invariant

complement of A4 in S4 being, for instance, the group generated by
(

1 1
1 −1

)

).

Thus, we have a split short exact sequence of Γk-modules

(5) 1 // E // N // Q
{{

// 1.
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And, if we apply the functor H1(k, ·) to (5), we get the split short exact sequence

of pointed sets

1 // H1(k, E) // H1(k, N) // H1(k, Q)
tt

// 1.

and, in particular, the surjectivity of p : H1(k, N) → H1(k, Q).

If E = D2n ≃ µn ⋊ Z/2, n ≥ 3, then p : H1(k, N) → H1(k, Q) is the map

induced by functoriality from the Γk-module epimorphism p : µ2n ⋊ Z/2 → µ2

sending (x, 1) to xn. Consider the following commutative diagram of short exact

sequences of Γk-modules (where the vertical arrows are the natural inclusions).

(6) 1 // µn

��

// µ2n

��

(·)n

// µ2 //

��

1

1 // E // N
p // µ2 // 1

If we apply the functor H1(k, ·) to (6), we get the following commutative diagram

of pointed sets with exact rows.

· · · // H1(k, µn)

��

// H1(k, µ2n)

��

(·)n

// H1(k, µ2)
δ // H2(k, µn)

· · · // H1(k, E) // H1(k, N)
p // H1(k, µ2)

As the last vertical arrow is a group isomorphism, the map p is surjective if and

only if the group morphism H1(k, µ2n)
(·)n

→ H1(k, µ2) is. But via the canonical

isomorphisms H1(k, µ2n)→̃k⋆/(k⋆)2n, H1(k, µ2)→̃k⋆/(k⋆)2, the group morphism

H1(k, µ2n)
(·)n

→ H1(k, µ2) is k⋆/(k⋆)2n (·)n

→ k⋆/(k⋆)2, which is straightforwardly

surjective.

Remark 3.2: (1) If E = V4 then N = S4 and N is isomorphic, as a group, to

V4 ⋊ (Z/3Z ⋊ Z/2Z) but the short exact sequence

1 → V4 → S4 → Z/3Z ⋊ Z/2Z → 1,

which splits in the category of groups does not in the category of Γk-modules

when i /∈ k.
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(2) If E = Cn, n ≥ 2, the proof of Corollary 3.3 shows that p is surjective if

and only if, for any quadratic extension L/k the natural map Br(L|k)
n
→ Br(L|k)

is surjective.

3.2. Fields of cohomological dimension ≤ 1.

Corollary 3.3 (Fields of cohomological dimension ≤ 1): Let k be a field of

characteristic 0.

(1) If k has 2-cohomological dimension cd2(k) ≤ 1 then for any G-cover

f with field of moduli k as G/PGL2-cover the cohomological obstruc-

tion Ik(f) only consists of the trivial class. In particular the prestack

PSG/PGL2
(f) is a stack and the natural map H(C)(k) → Hrd(C)(k) is

surjective.

(2) If k has cohomological dimension cd(k) ≤ 1 then the natural map

H(C)(k) → Hrd(C)(k) is surjective.

Proof. (1)

Step 1: We first show that under the assumption cd2(k) ≤ 1 the map

p : H1(k, N) → H1(k, Q) is always surjective. From Proposition 3.1, there

are two remaining cases to consider: E = V4 and E = Cn, n ≥ 2.

If E = V4 use that 2 is the only prime dividing |V4| and apply [28, I §5

Proposition 46] to the short exact sequence of Γk-modules

1 → E → N → Q → 1

with I = {2}.

If E = Cn, n ≥ 2, we can even prove that p is bijective. Indeed,

p : H1(k, N) → H1(k, Q) is the map induced by functoriality from the Γk-module

epimorphism p : k⋆ ⋊ Z/2 → k⋆ ⋊ Z/2 sending (x, 1) to (xn, 1). Consider the

following commutative diagram of short exact sequences of Γk-modules, where

s : Z/2 → k⋆ ⋊ Z/2 is the canonical section sending 1 to (1, 1).

(7) 1 // k⋆

��

// N

p

��

// Z/2 //

s

~~
1

1 // k⋆ // Q // Z/2 //

s

}}
1
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If we apply the functor H1(k, ·) to (7), we get the commutative diagram of

pointed sets with exact rows below.

(8) H1(k, k
⋆
) //

��

H1(k, k
⋆

⋊ Z/2)
π //

p

��

H1(k, Z/2)

s

xx
// ⋆

H1(k, k
⋆
) // H1(k, k

⋆
⋊ Z/2)

π // H1(k, Z/2)

s

xx
// ⋆

To prove the bijectivity of p in (8), we prove that the two last horizontal arrows

π are bijective. Given a quadratic character χ ∈ H1(k, Z/2), denote by Lχ the

fixed field of ker(χ) in k. The point is that the Brauer group Br(Lχ|k) (which

becomes trivial under our assumption) maps surjectively onto the fiber π−1(χ).

Indeed, let s(χ) : Γk → k⋆ ⋊ Z/2 be the canonical 1-cocycle lifting χ. The

Γk-module k⋆ twisted by s(χ) is the group k⋆ equipped with the Γk-module

structure σ · x = σ(x)−1 if σ /∈ ker(χ) and σ · x = σ(x) if σ ∈ ker(χ); we denote

it by s(χ)k
⋆
. Then, by [28, I §5, Corollary 2], there is a natural surjective map

H1(k, s(χ)k
⋆
) ։ π−1(χ).

Then, we prove that H1(k, s(χ)k
⋆
) is isomorphic to Br(Lχ|k). Consider the

inflation-restriction exact sequence

(9) 0 → H1(Γk/ΓLχ
, (s(χ)k

⋆
)ΓLχ ) → H1(Γk,s(χ) k

⋆
) → H1(ΓLχ

,s(χ) k
⋆
).

As a ΓLχ
-module, s(χ)k

⋆
is just L

⋆

χ, hence, by Hilbert 90, the last term of

(9) is trivial. Thus, by exactness, H1(Γk/ΓLχ
, (s(χ)k

⋆
)ΓLχ ) is isomorphic to

H1(Γk,s(χ) k
⋆
). But Γk/ΓLχ

=Gal(Lχ|k) is just Z/2 so, by the cohomology of

cyclic groups [28, VIII, §4], H1(Γk/ΓLχ
, (s(χ)k

⋆
)ΓLχ ) is isomorphic to

ker(s(χ)N)/im(s(χ)D),

where s(χ)N and s(χ)D are the norm and derivation for the twisted action. If

we denote by N and D the norm and derivation for the usual action, a direct

computation shows that ker(s(χ)N) = ker(D) and im(s(χ)D) = im(N) thus

H1(Γk/ΓLχ
, (s(χ)k

⋆
)ΓLχ ) is isomorphic to H2(Γk/ΓLχ

, L⋆
χ) = Br(Lχ|k).

Finally, as Lχ/k is a quadratic extension, Br(Lχ|k) is contained in the 2-

torsion subgroup of Br(k), which is trivial by assumption. So π−1(χ) consists of

one single element, which yields the injectivity. And the surjectivity is straight-

forward since π : H1(k, k
⋆

⋊ Z/2) → H1(k, Z/2) admits a section.
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Step 2: From the first step Ik(f) 6= ∅. We can show now that it consists only

of the trivial cohomology class because, under our assumption, H1(k, PGL2(k))

is trivial. Indeed, consider the canonical short exact sequence of Γk-modules

1 → µ2 → SL2(k) → PGL2(k) → 1.

It gives rise to the exact sequence of pointed sets

(10) H1(k, SL2(k)) → H1(k, PGL2(k))
δ
→ H2(k, µ2).

But, on the one hand, H1(k, SL2(k)) is trivial by Hilbert 90 and, on the other

hand, cd2(k) ≤ 1 implies that H2(k, µ2) is trivial too.

(2) By the above, any G-cover f : X → P1
k

with field of moduli k as G/PGL2-

cover is G/PGL2-isomorphic to a G-cover f0 : X0 → P1
k

with field of moduli

k as G-cover. Now, since cd(k) ≤ 1, the group H2(k, Z(G)) is trivial and

thus, f0 is defined over k [9]. (Alternatively, using gerbes, by (1) the prestack

PSG/PGL2
(f) is a gerbe. But any gerbe over a field of cohomological dimension

≤ 1 is neutral [12].)

Using that any number field k is an intersection of fields of cohomological

dimension ≤ 1 [7, Proposition 2.7], we obtain the following corollary.

Corollary 3.4: For any prd ∈ Hrd(C)(Q) the field κ(prd) is the intersection

of the fields κ(p) for all p ∈ Π−1(prd).

3.3. p-adic fields. For p-adic fields k/Qp (which are of cohomological dimen-

sion 2), we obtain an upper bound which only depends on k and not on r ≥ 3.

Corollary 3.5: Let k/Qp be a p-adic field. Then there exists an integer

d(k) ≥ 1 depending only on k such that, for any finite group G, any r-tuple C

of nontrivial conjugacy classes of G and any k-rational point prd ∈ Hrd(C)(k),

we have

mk(prd) ≤ d(k).

Proof. From [28, IV, Theorem 4] the set H1(k, PGL2(k)) is finite. In particu-

lar, there exists a finite extension k0/k such that the image of the restriction
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Resk0

k : H1(k, PGL2(k)) → H1(k0, PGL2(k)) is trivial. So, if f : X → P1
k is a

representative of the G/PGL2-isomorphism class of G-covers corresponding to

prd ∈ Hrd(C)(k), Ik0 (f) is either empty or contains only the trivial class. The

former can only occur if f has normalized base group V4 or Cn, n ≥ 2. But, by

Lemma 3.7, up to replacing k0 by a degree ≤ 6 extension k′0/k0, we can always

assert that Ik′
0
(f) is not empty. So the bound d(k) = 6[k0 : k] works.

Another classical problem in arithmetic geometry is the existence of local-

global properties. Given a number field k and a place v of k, we write kv/k for

the completion of k at v. Then, we have the following partial result.

Corollary 3.6 (Partial local-global principle): Fix a finite group G and an

r-tuple C of nontrivial conjugacy classes of G. Then, for any k-rational point

prd ∈ Hrd(C)(k) corresponding to a G-cover with trivial base invariant,

mk(prd) = 1 if and only if mkv
(prd) = 1 for all places v of k.

Proof. Let f : X → P1
k be a representative of the G/PGL2-isomorphism class of

G-covers corresponding to prd ∈ Hrd(C)(k). Then, as f has trivial base group,

Ik(f) contains exactly one class [c]f . Hence, the conclusion follows from the

local-global principle for H1(k, PGL2(k)) (or, equivalently, for quadratic forms

[27, IV.3, Theorem 8]).

3.4. The general case. In this section k is any field of characteristic 0.

3.4.1. Nontrivial base invariant. Let E be one of the groups listed in Lemma (1)

of 2.1, let N be its normalizer and Q := N/E the resulting Γk-module quotient.

Assume that E is not trivial. We define

d(E) =1 if E =A5,S4, D2n, n ≥ 3 odd,

2 if E =A4, D2n, n ≥ 3 even, Cn, n ≥ 2,

6 if E =V4.

Recall the notation p and i of diagram (4).

Lemma 3.7: For any [c] ∈ H1(k, Q) there exists a finite extension k[c]/k such

that [k[c] : k] ≤ d(E) and i(p−1(Res
k[c]

k [c])) ⊂ H1(k[c], PGL2(k)) contains the

trivial class.
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Proof. If E = A5, S4 then E = N and Q is trivial so there is nothing to prove.

If E = D2n, n ≥ 3 odd then N = D4n and we are in the situation of Lemma

2.2.

If E = Cn, n ≥ 2, recall the notation of diagram (8). As above, to χ = π([c]) ∈

H1(k, Z/2) corresponds the quadratic extension Lχ/k and the restriction map

Res
Lχ

k : H1(k, Z/2) → H1(Lχ, Z/2) sends χ to the trivial class. So the restriction

map Res
Lχ

k : H1(k, N) → H1(Lχ, N) sends s(χ) to the trivial class. But, by

definition, Res
Lχ

k (s(χ)) ∈ p−1(Res
Lχ

k [c]). So we can take k[c] = Lχ.

If E = A4, D2n, n ≥ 3 or V4 then Q is a trivial Γk-module thus H1(k, Q) is

the set of all group morphisms Γk → Q (modulo inner conjugation by elements

of Q). So, if we write once again k[c] for the fixed field of ker([c]) in k then

we have [k[c] : k] ≤ |Q| and Res
k[c]

k ([c]) is the trivial class in H1(k[c], Q). So, in

particular, p−1(Res
k[c]

k ([c])) contains the trivial class.

Now, Lemma 3.7 combined with Proposition 2.6 and Proposition 2.4 yields

respectively Corollary 3.8 and Corollary 3.9 below.

Corollary 3.8 (Lifting ramification divisors with nontrivial stabilizer): For

any trd ∈ Jr(k) with nontrivial normalized stabilizer S we have mk(trd) ≤ d(S).

Corollary 3.9 (Lifting G-covers with nontrivial base invariant): Let G be a

finite group and C be an r-tuple of nontrivial conjugacy classes of G. Then, for

any prd ∈ Hrd(C)(k) corresponding to a G-cover with nontrivial normalized

base group E we have mk(prd) ≤ d(E).

3.4.2. Trivial base invariant.

Lemma 3.10: For any trd ∈ Jr(k) we have mk(trd) ≤ r!

Proof. For this, we consider the following commutative square, where Πr and

Πr are the quotient map modulo PGL2 whereas Σr, Σrd
r are the quotient map

modulo the symmetric group Sr.

(11) Ur Πr

//

Σr

��

Ur/PGL2

Σrd
r

��
Ur

Πr // Jr

All the morphisms in (11) are defined over Q. Furthermore, the map sr :

Ur/PGL2 → Ur sending PGL2t
′ ∈ Ur/PGL2 to its unique representative of the
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form (0, 1,∞, λr(t′)) ∈ Ur is a section of Πr : Ur → Ur/PGL2 defined over Q.

So the conclusion follows from the fact Σrd
r has degree ≤ r!.

Given an integer r ≥ 3 there are only finitely many conjugacy classes of

finite subgroups of PGL2(k) of the form St with t ∈ Ur(k) so we can define

c(r) = max{|S0
t
| : t ∈ Ur(k)} (more precisely, c(2s + 1) = 4s + 2, s ≥ 1 and

c(2s) = 4s, s ≥ 2 except in the following cases: c(2s) = 60 for s = 6, 10

and c(2s) = 24 for s = 3, 4, see the proof of Lemma 3.12 for a proof of this

assertion).

Corollary 3.11 (Lifting G-covers): Let G be a finite group and C be an r-

tuple of nontrivial conjugacy classes of G. Then, for any prd ∈ Hrd(C)(k) we

have mk(prd) ≤ r!c(r).

Proof. In the case of a nontrivial base invariant, Corollary 3.9 solves the prob-

lem. So, let prd ∈ Hrd(C)(k) corresponding to a G-cover f : X → P1
k
, with triv-

ial base group and ramification divisor t ∈ Ur(k). Then, according to Lemma

3.10, we may assume that there exists a finite extension k0/k with [k0 : k] ≤ r!

and such that t = Σr(t
′) for some t′ ∈ Ur(k0). Now, for any σ ∈ Γk0 we have

a commutative square.

X
uσ //

f

��

σX

σf
��

P1
k

vσ // P1
k

As f has a trivial base group, the map v : Γk0 → St sending σ to vσ is a well-

defined 1-cocycle. Furthermore, St is a trivial Γk0-module so H1(k0, St) is just

the set of all group morphisms Γk0 → St modulo inner automorphism of St. In

particular, if k′0 is the fixed field of ker([v]) in k, then [k′0 : k0] ≤ |St| ≤ c(r)

and Res
k′
0

k0
([v]) is trivial in H1(k′0, St), that is vσ = Id, σ ∈ Γk′

0
and f has field

of moduli k′0 as G-cover.

3.4.3. Lifting ramification divisors and hyperelliptic curves. For g ≥ 1 and r =

2(g + 1), Jr is the coarse moduli space for genus g hyperelliptic curves and

for any trd ∈ Jr(k) corresponding to the isomorphism class of an hyperelliptic

curve Xtrd , the stabilizer St is isomorphic to the automorphism group Aut(Xtrd)

modulo the hyperelliptic involution i. An hyperelliptic curve Xtrd/k is said to be

hyperelliptically defined over k if it admits a k-model Xk/k with equation
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y2 = P (x), where P ∈ k[x] and disc(P ) 6= 0 or, equivalently, if mk(trd) = 1.

This provides a reformulation of Corollary 3.8 in terms of hyperelliptic curves.

When g = 1 or g ≥ 2 is even, a genus g hyperelliptic curve X/k is defined

over k if and only if it is hyperelliptically defined over k [24]. This is no longer

true when g ≥ 3 is odd [17].

In the case of divisors with nontrivial stabilizers Corollary 3.8 can be improved

as follows.

Lemma 3.12: For any trd ∈ Jr(k) with normalized stabilizer S we have the

following.

(1) If r = 3, 4 then mk(trd) = 1.

(2) If r ≥ 5 and r ≡ 1, 2, 3 mod 4 then mk(trd) = 1 if S is non cyclic; and

mk(trd) ≤ 2 if S is cyclic nontrivial.

Proof. (1) For r = 3, there is nothing to prove. For r = 4, we use that J4 is a

coarse moduli space for elliptic curves. For any t ∈ U4(k) such that trd ∈ J4(k),

denote by Etrd/k the associated (isomorphism class of) elliptic curve(s). Then,

Etrd/k has field of moduli k. But, by [29, I §4, Proposition 4.5], the field of

moduli of an elliptic curve is its minimal field of definition. So there exists an

elliptic curve E/k defined over k such that Ek is isomorphic to Etrd . And, if

Y 2 = X3+AX+B is a Weierstrass equation for E, with A, B ∈ k then the roots

x1, x2, x3, of X3 + AX + B produce a k-rational lift {x1, x2, x3,∞} ∈ U4(k) of

trd.

(2) We consider separately the case r ≡ 2 mod 4 and r ≡ 1, 3 mod 4. For

the r ≡ 2 mod 4 case, we use that Jr is the coarse moduli space for genus

g hyperelliptic curves (with r = 2(g − 1)). Then, by [19, Theorem 5.4] and

[24], any genus g hyperelliptic curve X such that the automorphism group of

X modulo the hyperelliptic involution is non cyclic is hyperelliptically defined

over its field of moduli. Now, the conclusion follows from Corollary 3.8 for

nontrivial cyclic groups. For the r = 2s + 1 case, and, even for general r, one

can determine precisely which finite subgroups of PGL2(k) occur as stabilizers

of order r subsets of the projective line. For this, let E be one of the groups

listed in (1) of Lemma 2.1 and consider the Galois cover ΠE : P1 → P1/E.

Then any t ∈ Ur(k) with stabilizer E is a disjoint union of fibers of ΠE . Now,

Riemann–Hurwitz gives the ramification indices of ΠE , which are listed below.
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E A5 S4 A4 D2n, n ≥ 2 Cn, n ≥ 2

Ramification

indices of ΠE
(2, 3, 5) (2, 3, 4) (2, 3, 3) (2, 2, n) (n, n)

In particular, E stabilizes order r subsets of the projective line if and only if r

is of the form listed below.

E r

A5 r = ǫ130 + ǫ220 + ǫ312 + m60

S4 r = ǫ112 + ǫ28 + ǫ36 + m24

A4 r = ǫ16 + (ǫ2 + ǫ3)4 + m12

D2n, n ≥ 2 r ≡ 0, 2, n, n + 2[mod 2n]

Cn, n ≥ 2 r ≡ 0, 1, 2[mod n]

with ǫi = 0, 1, i = 1, 2, 3 and m ≥ 0. In particular, for odd value of r, the only

possible groups are the cyclic groups and the dihedral groups D2n, n ≥ 2 with

n odd. So we can conclude with Corollary 3.8.

Combining Lemma 3.10, Lemma 3.12 and [19, Theorem 5.4] yields the fol-

lowing statement about hyperelliptic curves in characteristic 0.

Corollary 3.13: For any integer g ≥ 2, an hyperelliptic curve X of genus g

can be hyperelliptically defined over a degree ≤ (2g+2)! extension of its field of

moduli. Furthermore, if the automorphism group of X modulo the hyperelliptic

involution is noncyclic, then X can be defined over its field of moduli and if it

is cyclic nontrivial then X can be defined over a quadratic extension of its field

of moduli.

Remark 3.14 (Optimality of the bounds): It is not clear whether the bounds

given in Corollary 3.9 are optimal. However, for E = Cn, n ≥ 6 the bound

2 is optimal. Indeed, let G be Z/2Z and let C be r := 2(3n − 1) + 2 copies

of the nontrivial conjugacy class of G. For each t ∈ Ur(Q) there is only one

isomorphism class of G-cover with invariants G, C, t; we denote this G-cover

by ft. Furthermore, the base group Eft
of ft is precisely St. Indeed, Eft

is

contained in St and for any v ∈ St, both G-covers ft and v ◦ ft have invariants

G, C, t so they are isomorphic as G-covers. The same argument, combined with

the fact an involution class is always Q-rational, shows that the field of moduli

of ft as G-cover is the field of definition Q(t) of t and the field of moduli of ft

as G/PGL2-cover is the field of definition Q(trd) of trd. Now, we are going to
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choose a special value of t. Consider a genus 3n−1 hyperelliptic curve Xn/Q as

those studied in [19, Lemma 5.5 and Proposition 5.6]. The automorphism group

of Xn modulo the hyperelliptic involution is the cyclic group Cn and the field of

moduli of Xn is contained in k := R∩Q but Xn is not defined over k. If n ≥ 6 is

odd then 3n− 1 is even and, hence, any t ∈ Ur(Q) such that Xtrd is isomorphic

to Xn has a stabilizer St isomorphic to Cn but t /∈ Ur(k). In terms of G-covers,

ft has base invariant Cn, its field of moduli as G/PGL2-cover is contained in k

but its field of moduli as G-cover is not, so, according to Corollary 3.9 the field

of moduli of ft as G-cover is a quadratic extension of the field of moduli of ft

as G/PGL2-cover.

3.5. The profinite case. For a few years, the profinite aspects of regular

inverse Galois theory have been focussed on, in particular with the development

of Fried’s modular towers theory [15], [8], [4], [3] etc.

In this setting, most of the conjectures are stated for reduced Hurwitz towers

but they are usually easier to tackle for nonreduced ones. For instance, the mod-

ular tower conjecture [3, Conjecture 2.1] predicts that for any integer d ≥ 1 and

any reduced modular tower Hrd = (Hrd
n+1 → Hrd

n )n≥0 we have (Hrd
n )(d)(Q) = ∅

for n >> 0, where, given a k-variety X and an integer d ≥ 1, we write X(d) for

the image of the diagonal morphism from X into the dth-symmetric product

X ×k · · · ×k X/Sd (in particular, X(d)(k) =
⋃

[K:k]≤d X(K)).

Now, let ((Gn+1,Cn+1) ։ (Gn,Cn))n≥0 be a complete projective system

of finite groups and rn-tuples of nontrivial conjugacy classes. We consider the

corresponding Hurwitz tower (H(Cn+1) → H(Cn))n≥0 and reduced Hurwitz

tower (Hrd(Cn+1) → Hrd(Cn))n≥0. Assume first that rn ≤ r, n ≥ 0 for

some r ≥ 3. Then, Corollary 3.11 implies that, if for some d ≥ 1, we have

H(Cn)(r!c(r)d)(k) = ∅, n >> 0 then Hrd(Cn)(d)(k) = ∅, n >> 0. In particu-

lar, the modular tower conjecture (for all d) for reduced modular towers and

nonreduced ones are equivalent.

Another consequence of Corollary 3.11 is that one can lift projective systems

of k-rational points from reduced towers of Hurwitz spaces to nonreduced ones.

Corollary 3.15: Let prd = (prd
n )n≥0 ∈ lim

←−
Hrd(Cn)(k) be a projective sys-

tem of k-rational points on a reduced tower of Hurwitz spaces. Then there exists

a finite field extension k0/k (depending on prd) such that prd can be lifted to
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a projective system p = (pn)n≥0 ∈ lim
←−

H(Cn)(k0) of k0-rational points on the

nonreduced tower up to a finite extension.

Proof. Let (fn : Xn → P1
k
, αn)n≥0 be a projective system of G-covers cor-

responding to prd. For each n ≥ 0, σ ∈ Γk, write Hσ,n for the set of all

G/PGL2-isomorphisms from fn to σfn. This defines a projective system of

nonempty finite sets (Hσ,n+1 → Hσ,n)n≥0. To check this, for any n ≥ 0 write

Gn+1,n for the automorphism group of the Galois cover fn+1,n : Xn+1 → Xn.

Fix σ ∈ Γk and (u, v) a G/PGL2-isomorphism from fn to σfn. Then, by def-

inition of G-covers, for all g ∈Aut(fn+1), we have σαn+1(ugu−1) = αn+1(g)

and σαn+1(
σg) = αn+1(g), so ugu−1 = σg. In particular, uGn+1,nu−1 =

σGn+1,n and, hence, u(Xn) = σXn. So (u, v) ∈ Hσ,n+1 induces the G/PGL2-

isomorphism (u|
σXn

Xn
, v) ∈ Hσ,n, whence the projectivity. The fact that Hσ,n is

finite is straightforward and the fact it is nonempty results from the assumption

that prd
n is a k-rational point, n ≥ 0.

Now, choose ((uσ,n), vσ)n≥0 ∈ lim
←−

Hn,σ. This defines the profinite commuta-

tive diagram below.

Xn+1

uσ,n+1

��

// Xn

uσ,n

��

X0

uσ,0

��

// P1
k

vσ

��
σXn+1

// // σXn
σX0

// P1
k

In particular, we have a decreasing sequence of finite subgroups

· · · < Efn+1 < Efn
< · · · < Ef0 < PGL2(k)

which is stationary for n ≥ n0. Without loss of generality, we may assume

n0 = 0. Up to replacing the projective system (fn)n≥0 by a projective system

(vfn)n≥0 for some v ∈ PGL2(k), we can assume Ef0 = E is one of the groups

listed in Lemma 2.1. Then the map c : Γk → Q sending σ to vσE is a well-

defined 1-cocycle and it defines a cohomology class [c] ∈H1(k, Q). Let k0/k be

a finite extension such that [c] becomes trivial in H1(k0, Q). Then the trivial

class in H1(k0, N) trivially lifts [c]. That is, there exists v0 ∈ PGL2(k) such

that for any σ ∈ Γk0 we have vσeσ = v−1
0

σv0 for some eσ ∈ E. The same

argument as above ensures that this does not affect the fact we have a profinite

commutative diagram. Indeed, for each n ≥ 0 denote by Uσ,n the set of all

the G/PGL2 automorphisms of fn restricting to eσ. This, once again, yields



Vol. 164, 2008 LIFTING RESULTS FOR RATIONAL POINTS 45

a projective system of nonempty finite sets (Uσ,n+1 → Uσ,n)n≥0. Then, any

(wσ,n)n≥0 ∈ lim
←−

Un,σ yields a profinite commutative diagram

Xn+1

wσ,n+1

��

// Xn

wσ,n

��

X0

wσ,0

��

// P1
k

eσ

��

v0

��>
>>

>>
>>

Xn+1

uσ,n+1

��

// Xn

uσ,n

��

X0

uσ,0

��

// P1
k

vσ

��

P1
k

σXn+1
// σXn

σX0
// P1

k

σv0

@@�������

showing that (v0fn)n≥0 is a projective system of G-covers with field of moduli k0

thus corresponding to a projective system of k0-rational points p = (pn)n≥0 ∈

lim
←−

H(Cn)(k0) lifting prd.

Let k be either a number field or a finite field of characteristic 6= p and let

G̃ be a profinite extension of a finite group G by a pro-p group P admitting a

quotient isomorphic to Zp. Then [3, Theorem 2.5] states that there is no Galois

extension K/k(T ) with group G̃ and field of moduli k. Combining this and

Corollary 3.15, we obtain the following results for reduced towers of Hurwitz

spaces2.

Corollary 3.16: Assume that in Corollary 3.15 G := lim
←−

Gn is an extension

of a finite group G by a pro-p group P such that P ։ Zp. Then, for any number

field k we have lim
←−

Hrd(Cn)(k) = ∅.

4. Topological characterization of the base invariant

The aim of this section is to explain how the base invariant can be read out

off the Nielsen class. In Section 4.1, we recall how to compute explicitly the

monodromy of the cover Ψ : H(C) → Ur. We apply this to give a partition

of the Nielsen class encoding the base invariant. Finally, Section 4.2 describes

entirely the cases r = 3, 4, which play an important part in our applications.

2 In [20], K. Kimura gives a different proof of Corollary 3.15 (cf. [20, Lemma 5.2]) as well as

a proof of the special case of Corollary 3.16 for Fried’s modular towers (cf. [20, Theorem

5.4]).
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4.1. The braid action. Let t = {t1, . . . , tr} ∈ Ur(Q) and choose t0 ∈

P1(Q) \ t. Denote by B0 the set of all orientation preserving diffeomorphisms

of P1(C) with the compact-open topology.

With this topology, the evaluation map ǫt : B0 → Ur(C) sending h to

{h(t1), . . . , h(tr)} becomes a locally trivial fibration. So, we can consider the

cobord morphism of its associated long exact homotopy sequence

δt : πtop
1 (Ur(C), t) → π0(StabB0(t))

which sends a homotopy class [γ] to the connected component of the unique

continuous map γ̃ : [0, 1] → B0 such that γ̃(0) =Id and ǫt ◦ γ̃ = γ. Then, δt is

an epimorphism (π0(B0) = 1) and its kernel is the center Z(πtop
1 (Ur(C), t)) of

πtop
1 (Ur(C), t).

On the other hand, we have a natural representation

at : π0(StabB0(t)) → Out(πtop
1 (P1(C) \ t)),

sending the connected component of h ∈ StabB0(t) to the outer automorphism

of πtop
1 (P1(C) \ t, t0) induced by composition by h.

The resulting morphism Λt = at ◦ δt : πtop
1 (Ur(C), t) → Out(πtop

1 (P1(C) \ t))

is called the braid action. It can be explicitly described by choosing spe-

cific generators of πtop
1 (Ur(C), t), πtop

1 (P1(C) \ t, t0). Proceed as follows. Let

c : [0, 1] → P1(C) be a continuous injective closed path such that there exists

0 < s1 < · · · < sr < 1 with c(si) = ti, i = 1, . . . , r. Then c divides P1(C)

into two connected components C1, “on the left” and C2, “on the right”. Next,

choose two tuples c = (c1, . . . , cr), d = (d1, . . . , dr−1) of continuous injective

closed paths with

- di = di,1 · di,2 where di,1 is a continuous injective arc joining ti to ti+1 in C1

and di,2 is a continuous injective arc joining ti+1 to ti in C2, i = 1, . . . , r − 1.

- ci = αiβiα
−1
i where βi is a small circle around ti and αi is a continuous

injective arc joining t0 ∈ C2 to a point of C2 ∩ βi, i = 1, . . . , r. We require

furthermore that ci ∩ cj = {t0}, 1 ≤ i 6= j ≤ r and that the group morphism

Fr/〈Γ1 · · ·Γr〉 → πtop
1 (P1(C) \ t)) sending Γi to [ci], i = 1, . . . , r be an isomor-

phism.

With this notation, let [δi] ∈ π0(StabB0(t)) be the Dehn twist around di (see

[2]) and [qi] ∈ πtop
1 (Ur(C), t) be the braid induced by the path

qi : [0, 1] → Ur(C), t → (t1, . . . , ti−1, di,1(t), di,2(t), ti+2, . . . , tr).
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One then checks that δt([qi]) = [δi] and that at([δi]) sends the r-tuple c to

(c1, . . . , ci−1, ci+1, c
c−1

i+1

i , ci+2, . . . , cr), i = 1, . . . , r − 1.

Finally, we introduce the Hurwitz braid group Hr given by the generators

Q1, . . . , Qr−1 and the relations

(1) QiQi+1Qi = Qi+1QiQi+1, i = 1, . . . , r − 1;

(2) QiQj = QjQi, |j − i| > 2;

(3) Q1 · · ·Qr−1Qr−1 · · ·Q1 = 1.

The center Z(Hr) of Hr is generated by the involution (Q1 · · ·Qr−1)
r; the

quotient Mr := Hr/Z(Hr) is the mapping class group. From [2], we have

the following presentation result.

Proposition 4.1: The map µ sending [qi] ∈ πtop
1 (Ur(C), t) to Qi ∈ Hr is a

well-defined group isomorphism and we have the following commutative diagram

with exact rows

1 // Z(Hr) // Hr
// Mr

// 1

1 // Z(πtop
1 (Ur(C), t))

µ

OO

// πtop
1 (Ur(C), t)

µ

OO

δt // π0(StabB0(t)) //

µ

OO

1.

The next proposition gives an explicit description of the monodromy of the

ramification divisor cover Ψ : H(C) → Ur(C) in terms of G-covers.

Proposition 4.2: For any [f ] ∈ Ψ−1(t), and any continuous map q : [0, 1] →

Ur(C) such that q(0) = t, let q : [0, 1] → B0 be the unique continuous map such

that q(0) = Id and ǫt ◦ q = q. Then the map q̃ : [0, 1] → H(C) sending t to

[q(t) ◦ f ] is a well-defined continuous map such that Ψ ◦ q̃ = q and q̃(0) = [f ].

Let MC : Ψ−1(t)→̃ni(C) be the monodromy bijection defined by c, that

is, the map sending the G-isomorphism class of a G-cover (f, α) to the r-tuple

(α ◦ Mc1(f), . . . , α ◦ Mcr
(f)) ∈ ni(C), where Mci

(f) denotes the monodromy

action of ci, i = 1, . . . , r. Propositions 4.1 and 4.2 gives a group theoretic

description of the monodromy of Ψ.

Theorem 4.3: Via the monodromy bijection Mc : Ψ−1(t) → ni(C) and the

group isomorphism µ : πtop
1 (Ur(C), t) → Hr, the monodromy action for the
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cover Ψ : H(C) → Ur(C) becomes

Qi · g = (g1, . . . , gi−1, g
gi

i+1, gi, gi+2, . . . , gr), i = 1, . . . , r − 1.

Actually, given a braid Q ∈ Hr and a r-tuple g ∈ ni(C), the element Q·g only

depends on δt(Q) so the action Hr × nir(G) → nir(G) induces a well-defined

action Mr × nir(G) → nir(G). In the following, we will not always distinguish

these two actions. Given [h] ∈ π0(StabB0(t)) we will write Qh for µ([h]) ∈ Mr

and call it, by abuse of language, the braid associated to [h].

Given t ∈ Ur(Q), denote by St the set of all the subgroups of St. Also choose

c = (c1, . . . , cr), d = (d1, . . . , dr−1), q = (q1, . . . , qr−1) as in Section 4.1. For

any E ∈ St we define the E-Nielsen class associated with C and t as the

subset of all g ∈ ni(C) such that g ∼ Qvg, v ∈ E and g 6∼ Qvg, v /∈ E.

By the monodromy bijection Mc : Ψ−1(t) → ni(C) the E-Nielsen class

niE(C) corresponds to those G-covers f with invariants G, t, C and Ef = E.

These sets define a partition of the Nielsen class when E describes St .

The next section provides a complete description for the cases r = 3, 4.

4.2. The cases r = 3, 4. Recall the notation of Proposition 4.1 and consider

the following commutative diagram with exact rows, where ν, ν are the canon-

ical inclusions.

1 // Z(Hr) // Hr
// Mr

// 1

1 // Z(πtop
1 (Ur(C), t))

µ

OO

// πtop
1 (Ur(C), t)

µ

OO

δt // π0(StabB0(t)) //

µ

OO

1

1 // Z(πtop
1 (Ur(C), t))

ν

OO

// δ−1
t

(StabPGL2(Q)(t))
� ?

ν

OO

δt // StabPGL2(Q)(t) //
� ?

ν

OO

1

The aim of this section is to describe the images of µ◦ ν in terms of Q1, . . . , Qr.

The general method is (1) to compute explicitly St, (2) to compute the action

of each e ∈ St on a topological bouquet c = (c1, . . . , cr) and (3) identify this

action with a braid (modulo Z(Hr)) Qe. It can be carried out for all r ≥ 3 but,

for effective applications, we will need only the cases r = 3, 4.

4.2.1. The case r = 3. When r = 3, the Hurwitz braid group

H3 = 〈Q1, (Q1Q2)
2 | Q2

1 = (Q1Q2Q1)
2 = (Q1Q2)

3 = 1〉
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is finite and isomorphic to Z/3⋊Z/4. So, M3 = 〈Q1Q2〉⋊ 〈Q1〉 is isomorphic to

D6. Furthermore, any t ∈ U3(Q) is conjugate to {1, ζ3, ζ3}, which has stabilizer

D6. So, when r = 3 the canonical inclusions ν and ν are isomorphisms.

4.2.2. The case r = 4. When r = 4, recall the j-morphism j : U4 → P1 is

defined by the following commutative diagram

U4
f(1,2,3) //

π4

��

P1

j0

��
U4

j // P1,

where f(1,2,3) is the map sending λ = (λ1, λ2, λ3, λ4) ∈ P1 to (λ4−λ1)(λ2−λ3)
(λ4−λ3)(λ2−λ1)

∈ U4

and j0 the map sending λ ∈ P1 to 28

1728
(λ2−λ+1)3

λ2(λ−1)2 . Furthermore, j is PGL2-

invariant and factorizes through

U4

j //

Π4

��

P1

U4/PGL2

j

::vvvvvvvvv
,

where j is an isomorphism. So, j classifies the PGL2-orbits of U4 and, in

particular, the conjugacy class of St in PGL2(Q) depends only on j(t).

Theorem 4.4: Let t ∈ U4(Q) then the group St is conjugate in PGL2(Q) to

V4 if j(t) 6= 0, 1, D8 if j(t) = 1 and A4 if j(t) = 0. Furthermore,

if j(t) 6= 0, 1 then St can be identified with 〈(Q1Q2Q3)
2, Q1Q

−1
3 〉 ≃ V4 ⊂ M4;

j(t) = 1 〈Q1Q2Q3, Q1Q
−1
3 〉 ≃ D8 ⊂ M4;

j(t) = 0 〈(Q1Q2Q3)
2, Q2Q3〉 ≃ A4 ⊂ M4.

Proof. The conjugacy class of the stabilizer St of t ∈ U4 depends only on its

j-invariant j(t). We now compute effectively this stabilizer and use the results

of Subsection 4.1 to compute the preimage of St via δt. Let λ ∈ j−1
0 (j(t)) and

set tλ := {0, 1,∞, λ} ∈ U4(Q). Then any v ∈ Stλ
sends {0, 1,∞} to one of the

four following sets

(12) (a) {0, 1,∞} (b) {0, 1, λ} (c) {0, λ,∞} (d) {λ, 1,∞},
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with the additional conditions

(13) (a) v(λ) = λ (b) v(λ) = ∞ (c) v(λ) = 1 (d) v(λ) = 0.

From (12), there are 4 possibilities for v.

(1) If v ∈ PGL2(Q) sends {0, 1,∞} to {0, 1,∞} then it must be one of the

following homographies: z → z, z → 1
z , z → 1 − z, z → 1

1−z , z → z
z−1 ,

z → z−1
z .

(2) If v ∈ PGL2(Q) sends {0, 1, λ} to {0, 1,∞} then it must be one of the

following homographies: z → 1
1−λ

z−λ
z , z → (1 − λ) z

z−λ , z → λ z−1
z−λ ,

z → λ−1
λ

z
z−1 , z → λ

λ−1
z−1

z , z → 1
λ

z−λ
z−1 .

(3) If v ∈ PGL2(Q) sends {0, λ,∞} to {0, 1,∞} then it must be one of

the following homographies: z → z
λ , z → λ−z

λ , z → z−λ
z , z → z

z−λ ,

z → λ
λ−z , z → λ

z .

(4) If v ∈ PGL2(Q) sends {λ, 1,∞} to {0, 1,∞} then it must be one of

the following homographies: z → z−λ
z−1 , z → z−1

λ−1 , z → λ−1
z−1 , z → z−1

z−λ ,

z → 1−λ
z−λ .

The additional conditions (13) yield three different situations depending on

the value of λ:

(1) If λ 6= −1, 1
2 , 2, 1±i

√
3

2 then the elements stabilizing {0, 1,∞, λ} in

PGL2(Q) are the homographies: z → z, z → λ
z , z → z−λ

z−1 , z → λ z−1
z−λ .

(2) If λ = −1 then the elements stabilizing {0, 1,∞, λ} in PGL2(Q) are the

homographies: z → z, z → 1
z , z → 1+z

1−z , z → −z, z → z−1
z+1 , z → − 1

z ,

z → z+1
z−1 , z → 1−z

1+z .

(3) If λ = 1±i
√

3
2 then the elements stabilizing {0, 1,∞, λ} in PGL2(Q)

are the homographies: z → z, z → z−1
z , z → 1

1−z , z → λ−1
λ

z
z−1 ,

z → 1
1−λ

z−λ
z , z → λ−z

λ , z → z
z−λ , z → z−1

λ−1 , z → 1−λ
z−λ , z → λ

z ,

z → z−λ
z−1 , z → λ z−1

z−λ .

Finally, to determine the conjugacy class of Stλ
, compute the order of the

elements and use Lemma 2.1.

We are now reduced to studying only three cases, that is, j(t) 6= 0, 1, j(t) = 1

(λ = −1, 1/2, 2) and j(t) = 0 (λ = 1±i
√

3
2 ). In each of these three cases, choose

a topological bouquet c = (c0, c1, c∞, cλ) as explained in §4.1 and compute the

action of Stλ
on it. One obtains the following description for r = 4.
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λ generators of Stλ
order

corresponding braid

(modulo Z(H4))

λ 6= −1, 1
2 , 2, 1±i

√
3

2 z → λ
z 2 (Q1Q2Q3)

2

z → λ z−1
z−λ 2 Q−1

1 Q3

λ = −1 z → 1+z
1−z 4 Q1Q2Q3

z → 1−z
1+z 2 Q−1

1 Q3

λ = 1+i
√

3
2 z → 1+i

√
3

2z 2 (Q1Q2Q3)
2

z → z−1
(1−i

√
3)

2 z−1
2 Q−1

1 Q3

z → 1
1−z 3 Q2Q3

From the generators given in Theorem 4.4, one can recover any E-Nielsen

class for any subgroup E of V4 (j(t) 6= 0, 1), D8 (j(t) = 1) or A4 (j(t) = 0).

Example 4.5 (j(t) 6= 0, 1): Then V4 = 〈(Q1Q2Q3)
2, Q−1

1 Q3〉 has five sub-

groups:
{1}, C1 := 〈(Q1Q2Q3)

2〉, C2 := 〈Q−1
1 Q3〉,

C3 := 〈(Q1Q2Q3)
2Q−1

1 Q3〉 and V4.

Consider now the three relations

(4-1) g ∼ (Q1Q2Q3)
2 · g = (g3, g4, g2, g1)

(4-2) g ∼ Q−1
1 Q3 · g = (gg3

4 , g3, g2, g
g−1
2

1 )

(4-3) g ∼ (Q1Q2Q3)
2Q−1

1 Q3 · g = (gg1

2 , g1, g4, g
g−1
4

3 )

and denote by (4 − 1), (4 − 2), (4 − 3) their negation. Then,

ni
rd
Ci

(C) = {g ∈ G4 : (1), (2), (3), (4 − i), (4 − j), 1 ≤ j 6= i ≤ 3}/Inn(G),

i = 1, 2, 3.

ni
rd
{1}(C) = {g ∈ G4 : (1), (2), (3), (4 − i), 1 ≤ i ≤ 3}/Inn(G).

ni
rd
V4

(C) = {g ∈ G4 : (1), (2), (3), (4 − i), 1 ≤ i ≤ 3}/Inn(G).

5. Finding rational points on Hurwitz spaces

5.1. The cases r = 3, 4. We restrict here to the cases r = 3, 4, which are

the most important ones for effective applications since, when r = 3, reduced

Hurwitz spaces are finite sets of points and, when r = 4, reduced Hurwitz

spaces are curves for which we can compute the ramification of the cover
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Ψrd : Hrd(C) → P1 above 0, 1, ∞ (Theorem 1.2). But, as we explained in

Section 1.2, given a Q-rational point on Hrd(C) it is not obvious at all whether

it can be lifted to a Q-rational point on H(C) or not. However, one can use the

lifting property of the ramification divisor t (Lemma 3.12) to improve Corollary

3.9 in some special cases.

Let G be a finite group and C be an r-tuple of nontrivial conjugacy classes

of G. Assume that prd ∈ Hrd(C)(k) corresponds to a G-cover f with nontrivial

normalized base group and such that one of its representative f0 has a rami-

fication divisor t ∈ Ur(k) with a Γk-invariant stabilizer St and a Γk-invariant

base group Ef0 . Then Nf0 ∩ St is globally Γk-invariant and Ef0 is normal in

Nf0 ∩ St. As a result, one can carry out the construction of Section 2.2 with

Nf0,t := Nf0 ∩St and Qf0,t := Nf0,t/Ef0 replacing N0
f and Q0

f respectively. For

each representative f0 as above, we obtain a cohomology class [cf0 ] ∈H1(k, Qf0,t)

(which, this time, may depend on the choice of the representative f0). Then,

a sufficient condition for f to be G/PGL2-isomorphic to a G-cover with field

of moduli k0 as G-cover is that one of the sets Ik0(f0) := i(p−1([cf0 ])), for f0

a representative with Γk-invariant ramification divisor and Γk-invariant base

group Ef0 , contains the trivial class.

In the sequel, the groups Cn, n ≥ 2, D2n, n ≥ 3 etc. refer to the particular

groups of (1) of Lemma2.1.

Corollary 5.1: Let prd ∈ Hrd(C)(k) corresponding to a G-cover f with

nontrivial base group E and reduced ramification divisor trd ∈ Jr(k). Assume

that mk(trd) = 1.

(1) If one of the following situation occurs:

(i) E is non cyclic and E = St;

(ii) E ≃ Cn and St ≃ D2n, n ≥ 3;

(iii) E ≃ C2 and St ≃ D2n, n ≥ 3 odd.

Then prd ∈ Hrd(C)(k) can be lifted to a k-rational point p ∈ H(C)(k).

(2) In particular,

- If r = 3 then prd ∈ Hrd(C)(k) can be lifted to a k-rational point

p ∈ H(C)(k).

- If r = 4 then mk(prd) ≤ 2. Furthermore, if j(t) = 1 and E = C4, D8,

or if j(t) = 0 and E = A4, or if j(t) 6= 0, 1 and E = V4 then prd can

be lifted to a k-rational point p ∈ H(C)(k).
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Proof. We apply the method described above. (1) By assumption, mk(trd) = 1.

So, one can assume that f has a Γk-invariant ramification divisor t ∈ Ur(k). (i)

As Ef = St we also have Nf,t = Ef and, hence, Qf,t = {1}. (ii) By assumption,

Ef is the unique order n cyclic subgroup of St. So Ef is necessarily Γk-invariant

since St is. As a result, Nf,t = St and the conclusion follows from Lemma

2.2. (iii) By Lemma 2.1 there exists v ∈ PGL2(k) such that Svt = D2n. By

assumption, Ev◦f is one of the order 2 subgroups of Svt, which are all conjugate

in Svt since n ≥ 3 is odd. So, up to replacing v◦f by ak ◦v◦f , with a : z → ζnz

for some k = 0, . . . , n − 1, we may assume that Ev◦f is the subgroup C of D2n

generated by z → 1/z and, in particular, that it is Γk-invariant. But, then,

Nv◦f,vt = NorD2n
(C) = C = Ev◦f,vt, whence the conclusion. According to

Lemma 3.12, Subsection 4.2.1 and Theorem 4.4, the assertions of (2) are just

special cases of (1).

5.2. Effective criteria and examples. Now we can apply the remarks of

Section 5.1 to give effective results.

We first recall the group-theoretical description of the projective normaliza-

tion of the ramification divisor cover Ψrd : Hrd(C) → J4 ≃ P1 \ {0, 1,∞}.

When r = 4, the center of H4 is generated by the involution (Q1Q2Q3)
4 =

(Q1Q
−1
3 )2 and the minimal normal subgroup of H4 containing either (Q1Q2Q3)

2

or Q1Q
−1
3 is the quaternion group H8 = 〈(Q1Q2Q3)

2, Q1Q
−1
3 〉. The resulting

quotient H4/H8 is given by the generators γ1 = Q1Q2Q1(= Q1Q2Q3)modH8,

γ∞ = Q2modH8 and the relations

(1) γ2
1 = 1

(2) γ1γ∞γ1 = γ−1
∞ γ1γ

−1
∞ .

So, it is isomorphic to PSL2(Z). Hence, we obtain the following commutative

diagram with exact rows.

1 // H8
//

����

H4
//

����

PSL2(Z)

����

// 1

1 // V4
// M4

// PSL2(Z) // 1

Finally, define the reduced Nielsen class ni
rd

(C) to be the set of H8-orbits

of ni(C) (as Z(H4) acts trivially on ni(C), ni
rd

(C) is also the set of V4 =

H8/Z(H4)-orbits of ni(C)).
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Theorem 5.2 ([1, Propositions 3.4 and 3.28]): When r = 4, the projective

normalization Ψ
rd

: H
rd

(C) → P1 of Ψrd is a cover ramified above 0, 1,

∞ and the ramification is given by the action of γ0 = Q1Q2 mod H8, γ1 =

Q1Q2Q1 mod H8, γ∞ = Q2 mod H8 over ni
rd

(C).

Given an orbit O of the Nielsen class ni(C) under the Hurwitz group Hr

we denote by Ord its associated reduced orbit H8\O. We will say that Ord is

isolated if there is no other orbit of ni
rd

(C) under Hr with length |Ord|. This is

a sufficient condition to ensure that the corresponding geometrically irreducible

component HOrd of Hrd(C) is defined over QC. Considering γi acting on Ord,

we will denote its cycle decomposition by [(1)ai,1 , (2)ai,2 , . . . , (|O|)a
i,|Ord | ].

We begin with a rigidity criterion.

Corollary 5.3 (Rigidity Criterion): Fix a finite group G and an r-tuple C =

(C1, . . . , Cr) of nontrivial conjugacy classes of G. Assume that there exists an

isolated orbit Ord of ni
rd

(C) under H4 such that a1,1 > 0. Then there exists

regular realizations of G over Q with field of moduli a degree ≤ a1,1 extension

of QC, inertia canonical invariant C and ramification divisor with j-invariant 1.

Proof. The fact that Ord is isolated ensures that HOrd is defined over QC.

Above 1, the a1,1 fixed points of γ1 corresponds to a1,1 G/PGL2-isomorphism

classes of G-covers with ramification divisor having j-invariant 1 and normalized

base group C4 or D8 (Theorem 4.4). As the set of fixed points of γ1 is ΓQC
-

invariant, each of these points is defined over a degree ≤ a1,1 extension of QC.

The conclusion then follows from (2) of Corollary 5.1.

Example 5.4: All the computations were carried out using BRAID for GAP

[21], [30]. Also, the notation used for groups and conjugacy classes are those of

the ATLAS [6].

Consider G = A7, C = (5A, 5A, 5A, 5A). We obtain the following list for the

lengths of the reduced orbits

(78, 90, 90, 105, 150, 195, 270, 270, 270, 270).

The unique reduced orbit Ord of length 195 (and reduced genus 4) has the

monodromy data for γ0, γ1:

Type of γ0 : [(3)65]

Type of γ1 : [(1), (2)97]
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So, the hypotheses of Corollary 5.3 are fulfilled with a1,1 = 1 and QC = Q

(the conjugacy class 5A is rational).

Let us now use the genus 0 argument. Let Ord be an orbit of the reduced

Nielsen class ni
rd

(C) under the Hurwitz braid group H4 and denote by gOrd

the genus of the corresponding geometrically irreducible component HOrd of

Hrd(C). Riemann-Hurwitz genus formula yields

gOrd := 1 − |Ord| +
1

2

∑

i∈{0,1,∞}

∑

1≤j≤|Ord|
ai,j(j − 1).

Corollary 5.5 (Genus 0): Fix a finite group G and an r-tuple C=(C1,. . . ,Cr)

of nontrivial conjugacy classes of G. Assume that there exists an isolated orbit

O of ni(C) under H4 such that (i) gOrd = 0, (ii) one of the ai,1, . . . , ai,|Ord| is odd

for some i = 0, 1,∞ and (iii)|O| = |Ord|. Then there exists regular realizations

of G over Q with field of moduli QC and inertia canonical invariant C.

Proof. The fact that Ord is isolated together with conditions (i)–(ii) classically

ensures that the geometrically irreducible component HOrd of Hrd(C) corre-

sponding to Ord is geometrically irreducible, defined over QC, has genus 0 and

carries an odd degree QC-rational divisor. Thus, by Riemann–Roch theorem,

it has a dense subset of QC-rational points. Let f be a G-cover corresponding

to an unramified QC-rational point on HOrd . Then f has field of moduli QC

as G/PGL2-cover and the assumption (iii) |O| = |Ord| ensures that it has nor-

malized base group V4 (Theorem 4.4). The conclusion then follows again from

(2) of Corollary 5.1.

Example 5.6: Consider G = L2(19), C = (3A, 3A, 3A, 3A). We obtain the

following list for the lengths of the usual/ reduced orbits and the corresponding

reduced genera

((126/126, 0), (576/288, 8), (864/216, 1)).

The unique reduced orbit Ord of length 126 and reduced genus 0 has the mon-

odromy data:

Type of γ0 : [(1)6, (3)40]

Type of γ1 : [(2)63]

Type of γ∞ : [(2)3, (3)2, (5)4, (9)6, (10)4]
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So, the hypotheses of Corollary 5.5 are fulfilled with d = 1 and QC = Q (the

conjugacy class 3A is rational). See Shih’s theorem [22, I, Theorem 7.9] for a

rigid realization of L2(19) with inertia canonical invariant (3A, 19A, 19B).

5.3. The expansion method. The method described here derives from the

geometric description of the stratification of reduced Hurwitz spaces carried

out in [5]; we refer to this paper for a structured approach of the method and

only focus here on a resulting effective criterion.

Fix a finite group G and a r-tuple C = (C1, . . . , Cr) of nontrivial conjugacy

classes of G. Assume that Hrd(C)(Q) 6= ∅. The expansion method explains

how to obtain a regular realization of G over Q from prd provided three of the

conjugacy classes in C are rational.

Given a conjugacy class C in G and an integer n ≥ 1 we write Cn for the

conjugacy class of the gn, g ∈ G and [C]n for the n-tuple (C, . . . , C). With this

notation, the expanded tuple of C is

Ex(C) := ([C2
1 ]12, [C3

2 ]8, [C4
3 ]6, [C4]

24, . . . , [Cr]
24)

Proposition 5.7 (Expansion): Assume that Hrd(C)(Q) 6= ∅ and that Ci is

rational, i = 1, 2, 3 then H(Ex(C))(Q) 6= ∅.

Proof. The idea is to consider the direct product G×S4. Let nA be the conju-

gacy class of n-cycles in the symmetric group S4. Then the triple (2A, 3A, 4A) is

Q-rational and rigid. Also, by assumption, the conjugacy classes Ci, i = 1, 2, 3

are Q-rational and Hrd(C)(Q) 6= ∅, which implies that the r-tuple C is Q-

rational. As a result, the r-tuple

C̃ = ((C1, 2A), (C2, 3A), (C3, 4A), (C4, 0), . . . , (Cr, 0))

is Q-rational. Hence, the natural morphism Φ : Hrd(C̃) → Hrd(Ex(C)), which

sends the G/PGL2-isomorphism class of a G-cover f : X → P1 to the G/PGL2-

isomorphism class of the G-cover f : X → X/G ≃ P1 is defined over Q 3.

But, by construction, any point in the image of Φ corresponds to a G/PGL2-

isomorphism class of G-covers with normalized base group S4. So, in particular,

3 Note that, by elementary Galois theory, Ex(C) is the inertia canonical invariant of the

factor G-cover f : X → X/G. Note also that, as we work with reduced Hurwitz spaces,

the morphism Φ is well-defined but, a priori, Φ cannot be lifted to a morphism between

nonreduced Hurwitz space because the isomorphism X/G ≃ P1 is noncanonical. For

more details about this morphism Φ — which, in particular, is a closed immersion, we

refer to [5, Section 3 and Section 4].
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by Corollary 3.9, any Q-rational point in the image of Φ can be lifted to a Q-

rational point on H(Ex(C)).

To conclude, it is enough to prove that H(C̃)(Q) 6= ∅. Consider the following

commutative diagram, where F : H(C̃) → H(C) is the natural cover, defined

over Q, which corresponds to sending the G-isomorphism class of a G-cover

f : X → P1 to the G-isomorphism class of the G-cover f : X/G → P1.

H(C̃)
F //

Ψ1,r

��

H(C)

Ψ2,r{{wwwwwwwww

Ur

The rigidity of (2A, 3A, 4A) implies that the ramification divisors morphisms

Ψ1,r, Ψ2,r have the same degree and, hence, that F is an isomorphism defined

over Q. Furthermore, F commute with the action of PGL2 so, it induces a re-

duced isomorphism F rd : Hrd(C̃)→̃Hrd(C) defined over Q. Now, the conclusion

follows from Hrd(C)(Q) 6= ∅. The following diagram sums up the situation.

Hrd(C)
(F rd)−1

// Hrd(C̃)
Φ // Hrd(Ex(C)) H(Ex(C)).

Πoo

Example 5.8: In particular, starting from a regular realization of a finite group

G over Q with an inertia canonical invariant C satisfying the hypothesis of

Proposition 5.7, one can construct new regular realizations of G over Q with

inertia canonical invariant Ex(C). Consider, for instance, the Monster M which

has been regularly realized over Q with inertia canonical invariant the triple

of Q-rational classes (2A, 3A, 29A). Proposition 5.7 shows that M can also be

regularly realized over Q with inertia canonical invariant [29A]6.

But, the cases when we know that Hrd(C)(Q) 6= ∅ without knowing that

H(C)(Q) 6= ∅ are more significant. So, consider

G = L2(25), C = (3A, 3A, 3A, 3A).

We obtain the following list for the lengths of the usual/reduced orbits and the

corresponding reduced genera

((1200/300, 7), (936/468, 17), (304/304, 5), (120/30, 0).
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The unique reduced orbit Ord of length 30 and reduced genus 0 has the mon-

odromy data:

Type of γ0 : [(3)10]

Type of γ1 : [(2)15]

Type of γ∞ : [(2)2, (3)2, (6)2, (8)1]

So, by the genus 0 argumentHrd(C)(Q) 6= ∅ (the conjugacy class 3A is rational).

We cannot apply Corollary 5.5 and deduce that H(C)(Q) 6= ∅ since hypothesis

(iii) is not fulfilled. But the hypotheses of Proposition 5.7 are, which yields a

regular realization of L2(25) over Q with inertia canonical invariant [3A]42. See

[26] for a realization of L2(25) with a different inertia canonical invariant.
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